If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+1=400
We move all terms to the left:
x^2+1-(400)=0
We add all the numbers together, and all the variables
x^2-399=0
a = 1; b = 0; c = -399;
Δ = b2-4ac
Δ = 02-4·1·(-399)
Δ = 1596
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1596}=\sqrt{4*399}=\sqrt{4}*\sqrt{399}=2\sqrt{399}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{399}}{2*1}=\frac{0-2\sqrt{399}}{2} =-\frac{2\sqrt{399}}{2} =-\sqrt{399} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{399}}{2*1}=\frac{0+2\sqrt{399}}{2} =\frac{2\sqrt{399}}{2} =\sqrt{399} $
| 9/x=36/12 | | 9(x+10)+6=113 | | 15x-12=17x-13 | | (3+x)²-9=0 | | (2p-4)2=1 | | 1.5q=1.5q+39.15 | | 24=8(n+2) | | P=-2q | | 1w+(-4)=8 | | 5(6+e)=-70 | | 3(12x-28)=5-4(x+8) | | -8-2x=18 | | x/12=48/96 | | 1h+13=7 | | b-73/7=3 | | (x+3)²-9=0 | | -1+1x=-10 | | u/7+83=93 | | 8x-19=-4x-7 | | 6(3s+1)=150 | | Q=-5-p | | -9+1x=15 | | 2x-5=√(-4x+10) | | 81-6x=40 | | 3=t+12/6 | | 12+1n=7 | | 1d+(-9)=-5 | | 5(y-77)=90 | | 48-4x=77 | | Q-4p+4=0 | | 1x+12=30 | | 9x+11-4x=-5x-20+x |